|r|<1 , sum a/1-r
p>1
diverges: lim |an| ≠ 0
lim = 0 & f(x)' is neg
|an| converges
|an| diverges but an converges
lim |an+1/an| if < 1 it converges
doesnt work if = 1
lim sq.root |an| if < 1 converges
p-series
limit comparison
divergence test
divergence test
geometric
geometric
geometric
limit comparison
alternating
ratio
root
telescoping
use partical fraction decomp. you will get a sum, meaning it will converge