math 20 oct exam
bisection method steps
Step 1. check the prime factorization to make sure its not a perfect square.
Step 2. identify the two closest perfect squares, and then write them as equivalent to their square roots.
Step 3. find the midpoint between the to closest square roots, then compute its square
Step 4. determine which half of the interval contains your og number
Repeat steps 3 and 4, use ~ for final answer
set theory
Definition: a set is a collection of objects. The objects in the set are called elements
What kind of objects? Numbers, letters, symbols, names, people, other sets , ... ANYTHING!
order does not matter
x∈S, x∉S
x is contained in S, x is not contained in S
⊂, ⊆
proper subset (has less elements than og set), subset less or equal to
union
The union of sets A and B is the set of all objects contained in A or B (or both)
ex. If A: {a, b, c} and B= {d, e, f}, then the union of A and B is AUB = {a,b, c, d, e, f}
order doesnt matter
intersection
The intersection of sets A and B is the set of all objects contained in A and B. Intersection is denoted by A∩B
ex. A={a,b,c,d,e} B={d,e,f,g,h} A∩B={d,e}
order doesnt matter
complement
Let A be a set contained in a universe U The complement of A is. the set of all plements in U but not in A. The complement of A is denoted by A' or Ac
ex. u={1,2,3,4,5,6}. A={2,4,6}. A'={1,3,5}
order doesnt matter.
B\A
the complement of A with respect to be is everything in B but not in A.
ex. let u= {1,2,3,4,5,...} B= {1,2,3,...,100} A= {2,4,6,...,100}
B'= {101,102,103,...}
A'= {1,3,5,...,97,99,101,102,103,...}
B\A= {1,3,5,97,99}
natural numbers
The set of natural numbers, sometimes called the counting numbers, consists of 1,2,3,4...
denoted by ℕ= {1,2,3,4,...}
0 not included
integers
The set of integers consists of zero, the natural numbers, and all the negatives of the naturals.
Denoted by ℤ= {...,-2,-1,0,1,2,...}
the set of naturals is a subset of integers
rational numbers
A rational number is a number that can be expressed as a ratio of two integers. i.e. a rational number has the form A/B, where A&B∈ℤ, and B≠0.The set of all rational numbers is denoted by Q. ℕ⊂Q, ℤ⊂Q.
examples, 1, 2, 4, 47, 2/3, -4/3, 1/2
irrational number
An irrational number is a number that cant be expressed as a ratio of two integers. i.e., an irrational is a number that is not ratinal.
Examples: π, √2, √p where p=prime,
denoted by ℝ\Q
real numbers
the set of real numbers are all the numbers on a number line, denoted by ℝ
which types of numbers cant be listed
rational, real, irrational
what percent of ℝ do rational numbers take up
0
how to change remainder to a decimal
keep adding zeros to the end
fraction to decimal- 1/4
4⟌1
4⟌1.00= 0.25
steps to changing a repeating decimal to a fraction
Step 1. Let x=0.3'. 10x=10(0.3')= 3.3' the "10" is determined by amount of digits in your number
Step 2. 10x-x = 3.3-x => 9x=3
Step 3. x= 3/9 -> 1/3
repeating decimal to fraction that doesnt start with 0
2.56'
Step 1. let x=0.56'. 100x= 100(0.56')= 56.56
Step 2. subtract x from both sides. 100x-x= 99x = 56.56-x= 56. => 99x=56
Step 3. x= 56/99
Step 4. add back the whole number. 2 56/99= 254/99
cardinality
number of elements in a set. |{}|= x
|{Ø}|, |{}|
1, 0. becuase |{Ø}| has an empty set, but |{}| is an empty set.
density
Def. Let S⊆R. The set S is dense in R if for any a,b∈R such that a⊂b, there exists a number C∈S, such that a<c<b.
the set of rationals is dense in R. are the following sets dense in R? N, Z, Even integers, empty set, positive rational numbers
N- no. for example, I could choose 0 and 1/2, but there doesnt exist an element of N between 0 and 1/2. So, by the definition of density, N is not dense.
Z- no. for example, -4 , -3,5. There is no element of Z between those, so Z is not dense in R by definition
All even integers- no. same reason
Empty set- no.
The set of all positive rational numbers- no, ex -2 and -2.5
limit
a value that a sequence approaches as the number of terms approaches infinity.
ex) 8.1, 8.01, 8.001, 8.0001... has a limit of 8.
0,5,10,15,20... no limit bc it approaches infinity
fundamental theorem of arithmetic
any natural number n>1 can be written as a unique product of primes. ex. 6=2x3
124=2squaredx31
gcd
find the prime factorization, whatever they both share. denoted by gcd(m,n)
ex. 12=2x3, 30=2x3x5. GCD=2x3=6
ex. 36=2(2)x3(2) 48=2(4)x3 60=2(2)x3x5 GCD= 2(2) and 3. Therefore, 2(2)x3=12
lcm
denoted by lcm(m,n), is the smallest natural number that is divisible by both m and n
ex. lcm (12,30) = 60
ex. lcm(36,48,60) = 2(4) x 3(2) x 5 = 720
other way to find lcm
lcm(a,b)= axb/gcd(a,b)
ex. 24 and 35. 24= 2(3)x3, 35= 5x7. gcd(24,35)=1.
lcm(24,35)=24x35/1= 840
square root
let a∈R. The square root of a is a number x≥0, Whose square is equal to a.
i.e. √a=x, <-> x2=a
cant be negative bc √-4∉R, and two negatives make a positive
cube root
The cube root x of a is a number whose cube is equal to a.
i.e. 3√a=x <-> x3=a
ex. 3√8=2
can be negative bc 3√-8=-2
how to find square root
1296
Step 1. find the prime factorization
126= 2(4) x 3(4)
Step 2. rewrite the result from step 1 as a product of two equal factors.
(2x2x2x2) (3x3x3x3)
= 2x3x2x3x2x3x2x3
= (2x3x2x3)2
= 36(2)
So, √1296=36
finding the cube root
2744
Step 1. 2744= 2(3) x 7(3)
= (2x2x2) (7x7x7)
= (2x7) (2x7) (2x7)
= 14(3)
3√2744= 14
Quiz |
---|
ela 20 oct exam |
bio 30 oct exam |
BLED CHAP 38 |
STS L1 M |
v.42 |
EDP |
BLED CHAP 13 |
sts L2 M |
philo |
Math by Clarissa |
pyschology RM key terms |
chap.7 derivations |
Latin chap.7 vocab |
LO2 |
Midterms: ELEC |
Jugo gástrico |
sarastudio |
Parts of the Microscope 🔬 |
Parts of the Microscope 🔬 |
NBCD 2 |
41 |
PSY chap 3 |
Orzuelo, chalazión, pinguécula, pterigión, blefaritis |
Sistema respiratorio |
Cataratas |
Quizz Ofta |
Biology of cells |
schema narratif |
BIO topic 5 |
mögen |
psicologia generale |
kemi |
Woorden H2 |
Spanska v. 41 |
Bindweefsel |
Foo m2 |
Woorden H1 |
memory |
oral - copy - copy |
Grunder i belysningsteknik, del B |
Grunder i belsyningsteknik, del A |
KOTOBA PM LEMBAR 14(hal 53,54,55,56,57,58-59) |
NBCD 1 |
Anatomía |
Kata Benda Dasar |
phyc |
CELAW QUIZ 4 |
Inglês Objetos |
Palavras(verbos) p1 |
L'ete de Richard (Pre-IB French 10) |
PSY chap 5 |
PY2501.1 ~ {Recap of PY1502(Key Skills 2)} |
Nenasycené uhlovodíky |
M4 Quantidade de matéria |
Gontrastive grammar in Translation |
balance of payments of current accounts |
unit 7 words |
CHN |
Midterms: UTS |
Midterms: SMP |
Nasycené uhlovodíky |
sts L3 M |
Finance d'entrepriseChapitre 1 |
Droit des sociétés |
KOTOBA PM LEMBAR 13(hal 50,51,52,53) |
ENGLISHMICE, tourism and economy |
Exámen de derecho |
voc 4 |
etimologias |
Grec moderne - son des lettres |
Grec ancien - son des lettres |
bio 12 quiz on Macro molecules - copy |
Alphabet grec moderne - nom des lettres |
Independencia de México |
Alphabet grec ancien - nom des lettres |
Flash cards |
Todas as essenciais teoristas da enfermagem e |
Protists Kingdoms/Division |
Anatomia ocular |
so prov |
engels leren - kopie |
Extra woorden H2 |
engels leren |
Extra woorden H1 |
tp key words hinduism |
Respiratoriska systemet |
figure retoriche |
Armaturegenskaper - Belysningsprinciper, ljusfördelning och verkningsgradklar. |
fluid mechanicstrial 0.2 |
PSY chap 2 |
Computer science HT 1 |
revisão verd. ou fals. Constit. |
Funçoes inorganicas (acidos,bases,sais,nox) |
RPH MIDTERMS |
atividade revisão TGP |
v.41 |
Midterms: NSTP 1 |
BLED CHAP 58 |
KOTOBA PM LEMBAR 12(hal 46,47,48,49,50) |
101-125. |
ART APP MIDTERMS |
CHAP 59 BLED |
Inflation |
economics 2 |
IATA-codes |
MAPEH MUSIC 2ND QUARTER |
Medicina |
FINANCIAL MANAGEMENT TEST II |
Week 5 - Appendicular Skeleton (Chapter 8) |
Genetics and modern evolutionary synthesis |
basic english |
BIO 2 EXAM 2 |
2546- Labour And Delivery |
Theory of evolution |
Midterm |
Quadratic Expressions (gr 10 math) |
German speaking projects 1 |
2546- Third Trimester |
Patologia generale |
Scentific method |
Atrama ir judėjimas |
GOVERNANCE & DEVELOPMENT |
FINANCIAL MANAGEMENT |
Augalo organizmas |
gyvybes ivairove |
H1 |
bio |
duits H1 (4) |
geschiedenis 1.1 2.1 |
no kärnfysik åk9 nr2 |
duits H1 (3) |
duits |
inicio del desarrollo del sistema circulatorio |
Duits 2 H 1 woordjes |
english week 41 |
derecho |
KOTOBA PM LEMBAR 11(hal 43,44,45,46) |
BRW |
segmentación y delaminación del mesodermo |
Glossary Vocab Qiuz |
Test 2 |
2546- Second Trimester |
2546- First Trimester |
homework |
demografi migration etc |
Karens Midterm |
Afrikaans se instruksies |
Hjärtat |
geography case studies |
frans |
duits H1 (2) |
duits H1 |
SO-cold war |
Laboratório Anexo3Medição em Química |
SPANISHI would like |
Salesforce data cloud 2024 |
KOTOBA PM LEMBAR 10(hal 37,38,39,40-41,43) |
QUIZ Ethics |
NSTPdrrm |
312 |
bio 12 quiz on Macro molecules |
no kärnfysik |
Normalvärden, triage och HLR |
Week 4 - Joints (Chapter 9) |
6.1 ( school subjects spanish) |
5.3 (directions spanish) |
5.2 ( why you go there spanish) |
5.1 (Places in town Spanish) |
voc 5 (The death penalty) |
PY2501.1 ~ {Designing Good Research Studies} |
Palavras ou expressões p1 em inglêsP1 |
unidad 2 |
p |
O |
MIDTERMS THEORY |
Glosor |
COUNTRIES CAPITAL AND CURRENCIESby Ayaz Sindhi |
KOTOBA PM LEMBAR 9(hal 34,35,36,37) |
OB |
FREN 3P03 VOCABULAIRE |
Ite 366 |
Parcial 1 |
Quiz Gine Parcial |
S&A |
gr 9 science exam 1 |
Week 6 - Nervous System Chapter 12 |
Week 5 - Axial Skeleton (Chapter 7) |
FREN 3P03 |
Diritto PrivatoIl diritto è un sistema di regola per la soluzione di conflitti fra gli uomini. |
Chapter 21 vessels |
NO |
ses |
MAD Mobile Application development MIDTERM part 2 |
MAD Mobile Application development MIDTERM part 1 |
MAD Mobile Application development chapter 5 part 2 |
MAD Mobile Application development chapter 5 part 1 |
MAD Mobile Application development chapter 4 part 4 |
MAD Mobile Application development chapter 4 part 3 |
MAD Mobile Application development chapter 4 part 2 |
MAD Mobile Application development chapter 4 part 1 |
MAD Mobile Application development chapter 3 |
MAD Mobile Application development chapter 2 |
MAD Mobile Application develooment chapter 1 part 2 |
MAD Mobile Application develooment chapter 1 part 1 |
Ganda - copy |
ak hoofdstuk 1 havo 2 |
ITP |
glosor V.40 |
kap 7 |
Duits woordenlijst |
Kompletering prefix små tal |
にほんごの質問 |
Matte complwtering prefix stora tal |
Grunder i belysningsteknik övningstenta A+BÖvningstenta |
STAINS |
zahlen |
frage wörter |
Konjugation verben auf -ar |
Konjugation ser |
3Osso dell'anca, ileo, ischio, pube |
LO1 |
Glosor v41 |
FRÅGOR |
KOTOBA PM LEMBAR 8(hal 31,32,33,34) |
banking gk and awareness |
Fysik 5.1 , 5.2 Rörelse åk 8 |
Anatomofisiologia |
CHAPTER 4 |
anatomia 2 parcial |
French and indian warSTUDY |
systeme nerveux |
Enzymes, Chemical Peels, Circadia Cocoa Enzyme Lactic Acid Treatment |
intrinsic aging and hormones |
koder pli |
Vicios del lenguaje |
burn |
wound |
Auf die Räder |
auro |
cosmeceuticals |
galvanic |
Science 9 test 1 |
neurulacion |
come si scirvere un cv |
CVlinguaggio formale. come scivere una cover letter. |
notocorda |
anglais |
definition and characteristics of rubrics |
les autochtones |
ORG AGRI REVIEWER |
vocabulaire 1er chapitre term |
Kapitel 10 |
intrinsic aging and hormones |
Kapitel 9 |
FOLA M1 |
Auteurs sociologie contemporaine |
Genesis 1:2 And the earth was without form, and void; and darkness was upon the |
sinterizzazione |
Kapitel 1 - copy |
BASIC KEYBOARDING |
1L1M Understanding the self |
ROTC |
KOTOBA PM LEMBAR 7(hal 26,27,28,29,30) |
Drinkar 3De 10-20 första drinkarna |
class 12 ch 1 |
enzymes |
PAE 2P |
modernismo y posmodernismo |
microbiology |
parcial 1 y 2 - copia |
Enzymes, Chemical Peels, Circadia Cocoa Enzyme Lactic Acid Treatment |
FREN 3P05 Test 1 oct 2024 |
Urinary system |
historia |
inglês palavras adjetivos(p1)Palavras e expressões guardadas de Português para inglês e vice versa
Adjetivos |
french untie 1 |
Quiz 2 Body mechanics |
Week 4 - Skeletal System (Chapter 6) |
Chapitre 1c semaine 40 ord + futurum med ALLER |
kapitel 8 |
prefix |
kranialnerver |
Lab Heart |
Cirkulationssystemet |
the younger brother's inheritance |
Kort transaksionele tecks woordeskat |
evolution |
biology |
CHAPTER 3: TYPICAL SIGNS AND SYMPTOMS OF PSYCHOPATHOLOGY (PART 3) |
40 |
civil olyndand |
Grammar Ending's German |
Salesforce Data Cloud 1 - copy |
Kapitel 6 |
C# Chapter 4 part 2 |
C# Chapter 4 part 1 |
C# Chapter 3 Part 2 |
C# Chapter 3 Part 1 |
C# Chapter 2 Part 2 |
C# Chapter 2 Part 1 |
C# Chapter 1 part 2 |
C# Chapter 1 part 1 |
Kapitel 4 |
KOTOBA PM LEMBAR 6(hal 19,20,21,22-23,24,25,26) |
Kaptiel 3 |
Cognitive psychology attention |
76-100 |
قیافه شناسی |
marketing |
Paris Basin |
انتقال ها |
Market StudiesMarket Studies is a discipline used to understand the market, the customers, the development of the offer and the position of the brand & its communication. |
Many Kingdoms |
SCI-401 |
Pacial Gine |