Ovido
Språk
  • Engelska
  • Spanska
  • Franska
  • Portugisiska
  • Tyska
  • Italienska
  • Nederländska
  • Svenska
Text
  • Stora bokstäver

Användare

  • Logga in
  • Skapa konto
  • Uppgradera till Premium
Ovido
  • Hem
  • Logga in
  • Skapa konto

stat II

descriptive vs inferential statistics

1. summarize sample/population data with numbers/tables
2. make predictions about population parameters based on data.

controlling for a variable

it's removed or kept constant. is called control variable.

causality criteria

correlation between A and B, b takes place after A, correlation not explained by third factor.

experimental control

RCT where time order is manipulated and randomization excludes third explanations.

statistical control

examine relationship between x and y within subgroups, or include alternative explanations to the model.

lurking variables

not included in the study, but explain the association investigated.

spurious association
suppression

when both x and y are related to a third variable, their association disappears when controlling for this third variable.
we find no association between x and y, until we control for a third variable.

Simpson's paradox.
Chain relations

the relationship between x and y is reversed within levels of a third variable.
mediation: x1indirectly causes y, as x2 intervenes as mediator. when controlling for x2, the association between x1 and y disappears.

statistical interaction.
multiple causes

the association between x1 and y differs across levels of x2.
no association, positive, or negative.

differences in criterion have multiple causes; correlated-confounding (when adding extra x, y-x relationship changes) or not-correlated (x-y correlation does not change).

direct and indirect effects of x1 on y

association between x1 and y changes, not disappear.

hypothesis testing procedure.
3 types of hypothesis.

cross-sectional data/study

formulate. study variables. descriptive analysis. inferential statistics. interpret and report.
non-directional, directional (positive/negative).

random selection, no manipulation, two variables.

univariate VS bivariate statistics

1. check for individual variable's: shape, location, scale.
2. analyse variable together: scatterplot.

Least square estimation

if from the scatterplot we see a linear regression fits, we calculate the best straight line falling closest to all data point in the scatterplot.
y=a+bx

y ̂=a+bx

Y= predicted criterion
a= expected y when x=0, intercept

b= change in y for a one-unit increase in x, slope.

inspect the effect size in linear regression-Pearson correlation coefficient.

create a scale.free measure by using SD of both x and y.
r=(sx/sy)b

-1<r<1

residuals (e)

variations around the predicted score: is the vertical distance between observed and predicted value: e = y-(y ) ̂
y= a+bx+e

3 types of variation in regression models and use

1. TSS= total sum squares, diff. observed and mean score.
2. SSE= sum squared errors, diff. observed and predicted score.

3. RSS= regression sum squares, diff. predicted and mean score.

to predict how well the prediction model works.

Rsquared in regression model.
formula

proportion of variation in y that is explained by the model.
R2= TSS-SSE/TSS.

0<R2<1.

R2=0, b=0, predictor no explanatory power.

R2=1, perfect prediction.

the larger R2 the better the model.

inferential statistics and hypothesis testing.
p-value

use H0: by inspecting the probability of finding b, when H0 was true.
how likely is it we find such strong b when H0 is true.

check significance of b using t-statistics
check significance of r2 using F-statistics

H0: β=0, t=b/se, df=n-2.
F= (RSS/1)/SSE/(n-2), where RSS= df1, SSE/(n-2)= n-k-1, k=number of b.

type I and type II error

1. rejecting H0 when is correct (α of .05 means you're ok making the wrong decision 5% of the times).
2. not rejecting H0 when wrong.

assumptions of linear regression (4)

1. random sample.
2. linear relation x-y

3. conditional mean around b is = for all x.

4. conditional variance of y is normal for all x.

multiple regression model

multiple predictors in the model that explain one outcome variable. we investigate how much the predictors TOGETHER explain variation in y.

multiple regressio model formula

y= a + bk*xk + e
a=intercept

b= regression slope of each predictor; effect of one predictor on y, when controlling for all other predictors in the model

statistical control using the example.
assumption on βi

eliminate variation explained by PFM or CS, and keep the residuals, between which you investigate the relationship.
it's identical for all predictors.

using TSS, RSS, SSE to inspect explanatory power in multiple regression

1. when predicting y without any x: TSS (sample mean)
2. when predicting y with any x: SSE (prediction equation).

Global F-test

tells if the predictors collectively explain variation in y.
uses H0 and HA.

F=MSR/MSE, MSR= variation explained per predictor, MSE= average variation explained by each predictor we could add.

F= ration between MSR and MSE.

F>1, predictors explain more variation than expected from any additional predictor.

partial effect in multiple regression.
3 ways

inspecting the effect size of a single predictor on y.
3 ways: b*, r^2p, ΔR^2

standardized coefficient b*

scaling each b using SD of respective predictor and outcome.
b1*= b1(sx1/sy1), etc.. same formula for pearson correlation in linear regression. tells amounts of sds y should change when xi increases of 1 SD.

squared partial correlation rp^2

partial correlation between x1 and y, while controlling for x2; proportion of variation in y not yet explained by x2, but by x1.
e.g. PFM explained 0.8% of variation in AP not explained by CS.

change in explained variation ΔR2

difference in explained variation as we compare two models:
1. complete: all predictors, yc= a+b1x1+b2x2, Rc^2= RSSc/TSS

2. reduced: without x2, yr=a+b1x1, Rr^2= RSSr/TSS.

ΔR^2= Rc^2-Rr^2.

for two models differing by 1 parameter: is the proportion in y uniquely explained by xi.

F-test for hypothesis testing in the comparison model.
formula.

more insight

1. predicting with x1: SSEr, reduced model.
2. predicting with both x1 and x2: SSEc, complete model.

F= (SSEr-SSEc/df1)/(SSEc/df2), df1= dfr-dfc, df2=dfc.

comparing complete and reduced models differing in 1 b, we test for H0 (partial effect=0). because the complete model reflect HA (partial effect not 0).

Quiz
spagnolo unità 9
präteritum
Mikroekonomi
storia e teoria dei media
Chinois
page 272
1.2 instuderingsfrågor
KöpL 1,2 (1.2)
Felansvar vid köp av fast egendom 1.2
spanska glosor v. 7
Microclimate
Types of Climate
Factors Affecting Climate
german 39
AHHHH
ciencias 2
aps quiz
Audit Specialized
historia 2
7
peripheral nervous system
seminariefrågor
Chem Exam 1
Geografía UNAM
Física UNAM
Matemáticas UNAM
Literatura UNAM
Biología UNAM (1)
Historia de México UNAM (2)
Química UNAM
Historia Universal UNAM
tentamen 1
VOCABULARIO TEMA 10🟢
VOCABULARIO TEMA 9🔴
BUSFIN MIDTERM EXAM
Gross negligent manslaughter
rm 1
ULAM
concorso
EARTHING VS. GROUNDING
glossor
les sons
''
ciuleur
verbs
management
charlotte jing ran herold
Hypotes..-Kvantitiv metod IIII
kaka
Traject 3 - Vocabulaire
Träd (prov 2)
Samband - Kvantitiv metod III
Analysera orden
biologi prov
Fechas de Canadá
business 8 test 1
Bio 20. pg 1 - 21
Anglais sport
teks eksplanasi
transformasi geometri
SOCI exam
cardiovascular
fraaanvka
bio 207 lecture 4-5
sterbebegleitung
spanish unite 4 vocab
wero
Psych Exam 1
Ethics Quiz 1
algèbre
Spanska
les mof de liaison en anglais
HP5
Construction Solving looksfam - MEGALING
Spa glosor
vocabulaire addiction
Examen 1 (1° parte)
auf dem markt
scientific endavour
Università
Tc columna
Anatomi - växternas inre byggnad
förkortningar
jurudik
principfrågor 1.1
Rättsregler som rättsgrund 1.1
Växternas morfologi
skadeståndsrätt 1.1
internationales Währungssytem
Psicobio
tyska
PUNTUACIÓN
social test 1
Statrs and Capitals
Italian 1
Quimica
RM RISK EVALUATION
RM RISK ANALYSIS
Week 6- Skin Care 2: Serums & MLD - copy
ORACIÓN 2
ORACIÓN
Clases Febrero 2
france 12号
Science 3rd exam
TLE (Livelihood) 3rd exam
WW2
latin chap.9 vocab
ak se4
prov
bakterier
Gesundheit und Krankheit
religion
Interro 1
vokabeln
expresiones ideomáticas
13号
v.7
Lessico
husgrund
anläggningsteknik
anläggningsteknik grävmaskin
anläggningsteknik
Rastvori
beschrijf iemand
tenta
i composti organici e la cellula
vecinos dificiles
amalgama
Filo. Etica
anglais ia
Verb passe compose(dåtid)
l'impot , la taxe et la cotisation
Franska prov
L'entre deux guerres
cementos
Sjukfrånvaro
Polisen i samhället
svetová próza a dramata do 2. světové války🔥📚
erdkunde
def
vocabulario 2 EVA
germany
chem feb unit test
vocabulaire changing environment
Frans voc
SVL
The Outsiders
nini
oorlog
Biologie
literatura
hg
Here's a transcription of the visible text from the image: MEDIA AND INFORMATI
promo oficial interna
Part of the microscope
Zoology
como funciona el aparato respiratorio
Esp
methods of data collection
finanzas personales
finanzas personales
Inglés
Studeren Elektriciteit
Musset
Microcontroller
Statistik - Kvantitv metod II
anglais
A
B
História do 9°ano
dio cristo
F
epica-
Geothermal Energy
sound
Duitse woordjes
wortschatzmodul alles klar kapitel 1
il crollo dell'impero romano fino alla sua prima divisione
ادبیات کهن ایران و جهان
botany