Ovido
Lingua
  • Inglese
  • Spagnolo
  • Francese
  • Portoghese
  • Tedesco
  • Italiano
  • Olandese
  • Svedese
Testo
  • Maiuscole

Utente

  • Accedi
  • Crea account
  • Passa a Premium
Ovido
  • Home
  • Accedi
  • Crea account

itm 618 week 3

What is data mining?

- The process of extracting interesting (non-trivial, implicit, previously unknown and potentially useful) knowledge or patterns from data in large databases

What are the objectives of data mining?

- Discover knowledge that characterizes general properties of data
- Discover patterns on the previous and current data in order to make predictions on future data

What is an alternative name for data mining?

Knowledge discovery in databases (KDD)

In the CRISP-DM process, what do you do under the busines understanding process?

- Determining business objectives: Gathering background information, compiling the business background, and defining business objectives

- Assessing the situation: Requirements, assumptions, and constraints, What sort of data are available for analysis? Do you have access?


- Determining data science goals: Data science goals, Data science success criteria

In the CRISP-DM process, what do you do under the data understanding process?

- Collect initial data: Existing data, purchased data, and additional data

- Describe data: Amount of data and value types


- Verify data quality: Missing data and data errors

In the CRISP-DM process, what do you do under the data preparation process?

- Select Right data: Select training examples and featurs, is a given attribute relevant to your data mining goals

- Clean data: Fill in missed data, correct data errors


- Format data: Put data in a format for training the model

In the CRISP-DM process, what do you do under the modelling process?

- Select modelling techniques: Select data types available for analysis, select an algorithm or a model, define modelling goals, state specific modeling requirements

- Set up hyper parameters and build the model: Train the model, describe the result


- Asses the model: Overfitting and under fitting

In the CRISP-DM process, what do you do under the evaluation process?

- Evaluate the results: Are results presented clearly? Are there any novel findings? Can models and findings be applicable to business goals? How well do the models and findings answer business goals? What additional questions the modeling results have risen?

- Review the process: Did the stage contribute to the value of the results? What went wrong and how it can be fixed? Are there alternative decisions which could have been executed?


- Determine the next steps

In the CRISP-DM process, what do you do under the deployment process?

- Planning for deployment: Summarize models and findings, For each model create a deployment plan, Identify any deployment problems and plan for contingencies

- Plan Monitoring and maintenance: Identify models and findings which require support, How can the accuracy and validity be evaluated?, How will you determine that a model has expired?, What to do with the expired models?


- Conduct a final project review

What is a model?

A simplified representation of reality created to serve a purpose. Examples include maps, prototypes, black-scholes model, etc.

What is a prediction?

An estimate of an unknown value

What is a predictive model?

- A formula for estimating the unknown value of interest: the target
- The formula can be mathematical, logical statement

What is an instance/example?

- Represents a fact or a data point
- Described by a set of attributes (fields, columns, variables, or features)

What is training data?

The input data to create the model

What are the 2 feature types?

- Numeric: Anything that has some order like numbers, dates
- Categorical: Stuff that does not have order like text

What are some common data mining tasks?

- Classification and class probability estimation
- Regression

- Similarity Matching

- Clustering

- Co-occurrence grouping and association rules

What is an example of a classification model?

decsion tree

What is the purpose of a regression model? Provide examples.

- It finds a function from data which relates a real-valued variable with one or more other variables
- For example, predict daily water demand

What is the purpose of a clustering model?

- To group data to form classes (clusters)
- Class label is unknown in the training data

- Principle: maximizing the intra-class similarity and minimizing the inter-class similarity

- Applications include market/customer segmentation

What are supervised targets?

- A supervised technique is given a specific purpose for the grouping—predicting the target.
- Supervised tasks require different techniques than unsupervised tasks and are more useful

What are the 2 main subclasses of supervised data mining?

- Classification and regression

What are the 2 main subclasses of supervised data mining distinguished by?

- They are distinguished by the type of target

What are the 2 types of subclasses of supervised data mining under classication?

- Binary
- Categorical target

What type of supervised data mining might we address the following question with?
"Which service package (S1, S2, or none) will a customer likely purchase if given incen‐ tive I?"

This is also a classification problem, with a three-valued target.

What type of supervised data mining might we address the following question with?
"Will this customer purchase service S1 if given incentive I?"

This is a classification problem because it has a binary target (the customer either purchases or does not).

What type of supervised data mining might we address the following question with?
"How much will this customer use the service?"

This is a regression problem because it has a numeric target. The target variable is the amount of usage (actual or predicted) per customer

Explain how data mining applications can be applied to finance.

- Clustering and classification of customers for targeted marketing
- Identify customer groups or associate a new customer to an appropriate customer group

Explain how data mining applications can be applied to retail

- Discover customer shopping patterns and trends
- Re-arrange store layout

- Purchase recommendation and cross-reference of items

Explain how data mining applications can be applied to DNA Anlysis.

- Association analysis: identification of co-occurring gene sequences
- Most diseases are not triggered by a single gene but by a combination of genes acting together

- Association analysis may help determine the kinds of genes that are likely to co-occur together in target samples

What is dimensionality of a dataset?

- It is the sum of the dimensions of the features
- It the sum of the number of numeric features and the number of values of categorical features

What are association analysis used for?

- It is widely used for market basket or transactional data analysis

Which data mining tasks are supervised methods?

- Classification
- Regression

- Casual modeling

- similarity matching

- Link predicition

- Data reduction

Which data mining tasks are unsupervised methods?

- Similarity matching
- link prediction

- data reduction

- clustering

- co-occurence grouping

- profiling

What are some classical pitfalls in data mining setup?

What are some classical pitfalls in data mining setup?

Quiz
stems list w
Communication
Organisation du noyau
nucleic acidThe polymer of DNA is called
itm618 week 2final exam review
bacteriology
NGO toets 2.3 & 2.4
1- SCIN 1556 Communication infirmière (examen finale)
dual facial
Nucleic acids (a-level)
chapter-2
Afrikanska huvudstäder
La membrane plasmique
Mitochondries
bio 11
Pharmacology
Cytosquelette
newfoundland drivi g test
Communication cellulaire
Les choses practiques
History
bill of rights
french directionsFrench directions
BLG101 Chapter 16
Last section of soc
WLL
Diverse 1
French- Verb to like
French- Pronouns
ADN, opéron Trp
Ljud och ljus begreppNO prov begrepp träning
infection and responses
geschiedenis hoofstuk 2hoofdstuk 2 woorden
Chem-121 Exam
PHL Final
EBDM
Lipides 1 et 2
Lipides 3
test review
Python
lecture 1-4 research methdology
Lois de probabilités
Business- Booklet F
Intérêts des statistiques
7 ontleedbare stoffen
Rayons X
metallurgy exam reviewmetallurgy exam review
CHYS 2P10 Final Flashcards- from lecture content from the remaining lectures
Week 11 - Skin Care 1 - Assignment - Nutrition
RBCs
Fizika
Week 12 - Skin Care 1 - Assignment - Cosmetic Chemistry Part 1 and Part 2
Key Spanish Vocab Year 10 Mocks
1.2.2Demand
1.1.5Specialisation and the Division of Labour
1.4. Mon école au quotidien
1.1.4Production Possibility Frontiers
bocchiaro
model
milgram
Apocalyptic Sci-Fi Authors and titles
1.1.1 - 1.1.3Nature of Economics
woorden 3
Reversible reactions
Rate of reaction
Inhibition enzymatique
Anatomy bonesbones i need for my anatomy test
Geography Year 9 Term 1Includes -oceanic and continental crusts -pangea and evidence -convection currents -plate boundaries (diagrams, what happens, features)
Intersectionallities RG&S
Détermination protéines
SRMSocial Research Methodology
L2 S1 : DP (6,7,8)
L2 S1 : DP : Les élements constitutifs de l'IP : élément moral (5 2/2)
MEtabolism
Tentamen Kwalitatief Onderzoek
Figure de répulsion
Stéréochimie
L2 S1 : DP : Les élements constitutifs de l'infraction pénale : élément matériel (5 1/2)
WW6
lucy
Psy 3080 final exam
EDEL 321 FINAL
civics unit test
macromolecules
digestive system
chapter 4
Etre- to be (present tense)
Samhällskunskap 9 prov
RE judaism
modern world exam
latijn woorden 1/130latijn leren
Hoofdstuk 1 #2
Reading Unit 5 Vocabulary 11-20
1- SCIN 1505 Discipline infirmières (mi-session)
english vocabulary (mixed)
discipline infirmière
anglais
History of Ireland
L2 S1 : DP : L'application de la loi pénale (4 2/2)
Pools hoofdstuk 1 #1
Mécanique ventilatoire
L'appareil ventilatoire
L2 S1 : DP : L'application de la loi pénale (4 1/2)
Physiologie respiratoire
yr 9 knowledge JPN
Triple gcse biology paper 2
Bella Dunnelecrity
LINJEBOK II.0. NU JÄVLAR.
german 12
OMPROF. LINJE-BOCK OCH SIGNAL.
Gonnerhea
memory
jia yi rekenen
memory
jia yi
Unit 15: Key terms
Final Exam Questions
All Quiet on the Western Front List C
biologygrowth and differentiation year 9
Conflit Israël-Palestine : entre terre promise et religion
Capitale du monde
Haut-karabakh : un conflit centenaire entre l'Arménie et l'Azerbaïdjan
L2 S1 : DP : Les sources de la loi pénale (3)
Religion 110-C Exam
Lésions ADN
Week 4 - Skin Care 1 - Assignment - Skin Anatomy Part 2
biologiebiologie
Chapitre 16: Santé et stress
Week 4 - Skin Care 1 - Assignment - Skin Anatomy Part 1
Chapter 9
Propriétés des acides nucléiques
Séquences ADN répétées
Chapitre 12: Personnalité
Ch 28 Air Induction Systems
chap 10 Intelligence
Psychology Exam Final
Psychology Vocabulary Chapter 9
2e semaine
chap 4 Developpement
Y9 Science - Detection in Chemistry, Forces, Fit and HealthyScience revision for the 2nd test of year 9.
frans h2
chap 20
Régime politique français
test 2quiz
Ventricles of the brain
Brain
Mandats Présidents Français
plab 2
Biology Quiz 2
ADM
M11: H16.6
Level 3 questions
9 x 9
MDSÉlimination vésicale et intestinale
PSYCH*1000 therapies
Army Idrarmy idr inspection questions
PSYCH*1000 mental disorders
PSYCH*1000 health stress and coping
Quiz 13 surrentrainement
cours 12b Doping
cours 12b
BIOGLOGIE-CHAPITRE 8
Répétition des ADN
Biochimica clinica
Variation
1- SCIN 1557 Interventions (examen finale)
Anthropolgie et comportement humain
anatomy final
L2 S1 : DP : Les caractéristiques de la loi pénale (2)
Bases moléculaires du génome
L2 S1 : DP : Introduction (1)
Substantiv
MDSS.V. et mesures anthropométriques
samhällprov
Ma1c
Enzymologie
Sociology -educationeducation topic 2
Sociology - Educationeducation overall AI generated
Sociology- EducationEducation- Sociology Topic 1
Manon Lescaut
Introduction to Organic chemistry
chinese
sociology names!
Film Quotations
Chromosomes
PSYCH*1000 social psychology
genglish - copy
Interventions autre
PSYCH*1000 personality
PSYCH*1000 motivation and emotion
citizenship test (studying) pt2
citizenship test (studying)
Biology exam
Bible Exam
Circulatory System
history
Week 3 - Skin Care 1 - Facial Muscles and Massage Techniques
indigenous art vocab
Week 2 - Skin Care 1 - Wellness Concepts and Aromatherapy
Week 7 - Skin Care 1 - Enzymes & Fitzpatrick Scale Skin Typings
Week 10 - Skin Care 1 - Client Consultation and Homecare
nederlans
PSYCH*1000 lifespan development
Geschiedenisgeschiedenis
quiz 10A Fixation de buts
diversity week 10-11
African American History: American Revolutionary War for Independence EraAn exploration of African American role during the 18th Century C.E American Revolution Era .
ELTEKNIK. PROPH.
WOORDEN 2
science ks3langton boys
Hemostase
Oscars Trivia
math trial revisionrevision flash cards for maths trial
Sociology test Revision
Tissu musculaire
L2 S1 : DO Sanctions de l'inexécution (papier orange moyen) (8)
L2 S1 : Les effets du contrat entre les parties (papier moyen bleu) (6)
L2 S1 : Le contenu du contrat (papier vert moyen) (5)
L2 S1 : Le consentement (papier rose bas) (4)
L2 S1 : Les avant-contrats (papier orange bas) (3)
anatomisk språk
Tissu nerveux
L2 S1 : DO : La période pré-contractuelle (papier bleu bas) (2)
Kin - MusclesHip Flexors & Extensors - Anterior & Posterior Hip Adductors Quads Hamstrings Anterior & Posterior Extrinsic Foot Muscles
Hematology
SOC Final
module 5 part 3- final
personalities
PAST TIMES
MDSPrévention des infections et Examen mentale et physique
DAILY ROUTINE
GÉOGRAPHIE CULTURELLE
titles of JesusMr O is cruel
semiologie cardique
cours 9A relaxation
Jayla
thoracic and lumbar spine revision
KIN 1070 Final Exam
Stimulus Recover Adapatation (SRA)
cours 9b Imagerie et hypnose
pelvis, hip and femur revision
psycho cours 6
WGS FInal
PSYCH*1000 intelligence
vocab 14
History
PSYC*1000 thought and language
knee revision - diagnostic radiography
Kraft och rörelse
Engelska läxa
frans leest toets
Intro to Canadian Legal System - Dec 6study for test
Intro to Canadian Legal System
welness exam
PSYC*1000 memoryquestions to practice for psych final exam
particel model of matter
Criminal Law- non-fatal offences
.....
strat socialestrat sociale quizz
French
EngelsVwo leerjaar 1 Irregular verbs
russian
L2 S1 : DO : Introduction (papier vert bas) (1)
women
History 1.2, 1.3, 1.5, 2.1, 2.2
Stoichometry
SOC Term 2
social chapter 2 quizsocia
OSI Model Layers
Molecular Genetics Part 2
chem 120
Week 1 - Skin Care 1 - First Impressions & Room Furnishings
Week 1 - Skin Care 1 - Bacteriology & Sanitation
Crim 2p33 start-test 1
PSYCH 333: Early Adulthood
PSYCH 333: Adolescence
Intervention
DNA
korean
Module 6- part 4
Criminal law- sexual offences
Criminal Law- Robbery
Bio Unit 0,3a,3b
English NounsPeople = Personas
Crim 2P33 2nd midterm-final class
Economie
tent
Gov final
2.2 History Review
2.1 History Flashcards
diritto internazionale
initiation
frans
frans
woorden
L2 S1 : HDP Section 5 & 6 (Mr Hoarau) (7)
EPA - Project Management
L2 S1 : HDP : Des peines et des châtiments (Mr Hoarau) (6)
L2 S1 : HDP La naissance et développement de la procédure laique (Mr Hoarau) (5)
PSYCH 333: Early AdulthoodFinal exam on December 11
droit penal international
PSYCH 333: Middle AdulthoodFinal exam on December 11
French
Science test Prep 2
science
french verbs
New Religious Movements
L2 S1 : HDP Section 1 : justice royale et 2 : sources (Mr Hoarau) (4)
Life science
Criminal Law- Duress
Criminal law- Self-Defence
Criminal law- Theft
Chapter 13- STD's
spanska till 5 December
Psych exam!
L2 S1 : HDP La peine dans le monde héllénistique antique (Mme Lault) (3)
Module 6 part 3 final anatomy
Chapter 12- Substance Use and Abuse